A jumble of cords and two devices the size of soda cans protrude from Austin Beggin’s head when he undergoes testing with a team of researchers studying brain implants that are meant to restore function to those who are paralyzed.
Despite the cumbersome equipment, it is also when Mr. Beggin feels the most free. He was paralyzed from the shoulders down after a diving accident eight years ago, and the brain device picks up the electrical surges that his brain generates as he envisions moving his arm. It converts those signals to cuffs on the major nerves in his arm. They allow him to do things he had not done on his own since the accident, like lift a pretzel to his mouth.
“This is like the first time I’ve ever gotten the opportunity or I’ve ever been privileged and blessed enough to think, ‘When I want to open my hand, I open it,’” Mr. Beggin, 30, said. Days like that are always “a special day.”
The work at the Cleveland Functional Electrical Stimulation Center represents some of the most cutting-age research in the brain-computer interface field, with the team connecting the brain to the arm to restore motion.
It’s a field that Elon Musk wants to advance, announcing in a recent presentation that brain implants from his company Neuralink would someday help restore sight to the blind or return people like Mr. Beggin to “full-body functionality.” Mr. Musk also said the Neuralink device could allow anyone to use phones and other machines with new levels of speed and efficiency.
Neuroscientists and Mr. Beggin alike see such giant advances as decades away, though. Scientists who have approval to test such devices in humans are inching toward restoring normal function in typing, speaking and limited movements. Researchers caution that the goal is much harder and more dangerous than it may seem. And they warn that Mr. Musk’s goals may never be possible — if it is even worth doing in the first place.